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1. Introduction

FIM is a new global weather prediction model cur-
rently under development in the Global Systems
Division of NOAA/ESRL. The acronym FIM indi-
cates that the model uses a quasi-Lagrangian (“flow-
following”) vertical coordinate, finite-volume numer-
ics, and an icosahedral global grid.

Global models fall into two classes, spectral and
grid-point, depending on the spatial representation
of model variables on the sphere. Spectral mod-
els have gained almost universal acceptance in the
last several decades. However, drawbacks of such
models in terms of operations count and communi-
cations overhead have led, in recent years, to the de-
velopment of new types of grid-point global models
discretized on geodesic grids (Tomita et al. 2001).
Among the various geodesic grids, the icosahedral
grid stands out in providing near-uniform coverage
over the globe while allowing recursive refinement of
grid spacing. Given its near-circular grid cells (12
of which are pentagons while the rest are slightly
distorted hexagons), the icosahedral grid lends it-
self particularly well to the finite-volume approach
in which conventional finite-difference operators are
replaced by numerically approximated line integrals
along grid cell perimeters.

Williamson (1968) and Sadourny et al. (1968)
were the first to solve the shallow-water equations
on icosahedral grids using finite-difference formu-

lations. More recently, Colorado State University
modelers (Heikes and Randall 1995; Ringler et al.
2000) developed an icosahedral-hexagonal shallow-
water model (SWM) based on finite-volume numer-
ics. The German Weather Service is currently us-
ing an icosahedral-hexagonal model for operational
global weather prediction (Majewski et al. 2002). A
Japanese group (Tomita et al. 2004) has developed
a nonhydrostatic general circulation model (GCM)
formulated on an icosahedral-hexagonal grid and
has carried out high-resolution cloud-resolving GCM
simulations.

Recognizing the potential of finite-volume icosa-
hedral models in high-resolution global weather
and climate prediction, MacDonald, then director of
NOAA’s Forecast Systems Laboratory, teamed up
with Lee to develop a finite-volume icosahedral SWM
which they sucessfully subjected to the suite of SWM
tests of Williamson et al. (1992). In light of the posi-
tive outcome of this study, MacDonald in mid-2005
formed a group of modelers to develop an opera-
tional 3-D icosahedral global model, initially for nu-
merical weather prediction (NWP) but with an eye
on climate simulation. The group was specifically
charged with adding a third dimension to the SWM
in the form of an Arbitrary Lagrangian-Eulerian (ALE)
or “flow-following” vertical coordinate, and to set the
stage for its use in operational global NWP at 15 km
horizontal resolution.

The hybrid ALE-like vertical coordinate, the sec-

1



ond novel feature in FIM aside from the icosahedral
grid, is a combination of quasi-Lagrangian isentropic
layers in the free atmosphere and terrain-following
(σ coordinate) layers near the ground. It is an im-
proved version of a scheme used successfully in at-
mospheric and ocean models such as RUC [Rapid
Update Cycle: Bleck and Benjamin (1993), Ben-
jamin et al. (2004)] and HYCOM [HYbrid Coordinate
Ocean Model: Bleck (2002)]. Use of a vertical co-
ordinate with Lagrangian attributes is intended to re-
duce nonphysical dispersion of tracers such as mois-
ture, potential vorticity, and chemical compounds
during both lateral transport and lateral eddy mixing.
Physical parameterizations in FIM match those used
operationally by the Global Forecast System (GFS)
at the National Centers for Environmental Predic-
tion (NCEP). Validation of FIM, a preliminary hydro-
static version of which was completed by the middle
of 2008, will be based on extended-range real-data
forecasts using GFS initial conditions.

In preparation for converting the SWM to a
“stacked SWM” featuring a hybrid vertical coordi-
nate, a set of 2-D numerical experiments including a
single-layer ocean with an emerging seamount turn-
ing ocean bottom into dry land were carried out.
Once the 2-D model’s capability to accomodate zero-
thickness coordinate layers was confirmed, the team
proceeded to construct and test a purely isentropic
multi-layer coordinate model along the lines of Bleck
(1984a), leaving implementation of the isentropic-
sigma hybrid coordinate until later. The global cir-
culation in the isentropic model, maintained against
dissipation by Newtonian relaxation toward a baro-
clinically unstable basic state [basically, Held and
Suarez (1994) forcing translated into an isentropic
framework], remained robust for months of simula-
tion time. Hybridization of the vertical coordinate and
implementation of GFS model physics were the final
steps in model development.

2. Basic Equations

We denote the spatial coordinate system by (x, y, s)

where x, y are the common horizontal coordinates
and s is an arbitrary but monotonic function of height,
subject only to the requirement that bottom and top
of the model atmosphere are s surfaces. The phys-

ical dimensions of s are arbitrary; in fact, s can be
chosen to be a continuous extension of the verti-
cal layer index. Note that the horizontal coordinate
axes are strictly horizontal, implying that the horizon-
tal velocity vector v = (ẋ, ẏ) measures speed over
ground, not along a sloping coordinate surface.

Let ∇s be the 2-D gradient operator at s = const;
Π = cp(p/p0)

R/cp the Exner function; θ = cpT/Π the
potential temperature; M = gz+Πθ the Montgomery
potential; ζ the relative vorticity (i.e., the vertical or
k component of the velocity curl vector); θ̇ the net
diabatic heating; and F the sum of frictional forces.
The set of dynamic equations solved in FIM can then
be formulated as follows [see Kasahara (1974) and
Bleck (1978a) for detailed derivations]:
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Momentum conservation:
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Hydrostatic Equation:

∂M

∂θ
= Π. (4)

Conservation equations for moisture-related vari-
ables (gaseous, liquid, frozen water) and chemi-
cal compounds such as ozone have the same form
as (2). Source and sink terms in these equations
– the analogs of θ̇∂p/∂s – are governed by addi-
tional equations expressing what is commonly called
“model physics”.

Note that lateral mixing terms have been omitted
from the above equations. The dissipative properties
of the horizontal numerical discretization scheme
(see below) appear to be sufficient to counteract ac-
cumulation of energy on the grid scale. However,
vertical turbulent mixing of mass field constituents
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and momentum is accounted for in model physics;
it affect the above equations via the θ̇ term on the
right-hand-side of (2) and the forcing term F in (3).

Discretization in the vertical is accomplished in
FIM by integrating prognostic variables, as well
as their governing equations, over individual lay-
ers bounded by s surfaces. FIM actually goes one
step further: following the shallow-water paradigm,
it views the atmospheric state as one in which most
variables are piecewise constant in the vertical with
discontinuities across s surfaces.

Introducing the stairstep discretization of θ in the
hydrostatic equation (4) implies that M is vertically
constant in each coordinate layer. Since ∇sθ is ver-
tically constant by definition as well, the pressure
force terms in (3), if formulated with a layer average
of Π, do not create vertical shear within a coordinate
layer. Thus, there is no need to distinguish v from
its layer average v. The layer-averaged momentum
equation therefore can be written as

Momentum conservation:
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Here, indices 1 and 2 denote the upper and lower in-
terface, respectively, of the coordinate layer in ques-
tion, and ∆p = p2−p1. The vertical advection terms,
i.e., those involving ṡ, are arrived at by integrating
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by parts and involve velocity values on interfaces,
denoted here by v̂. Since v is discontinuous at in-
terfaces, the definition of v̂ is to some extent arbi-
trary and in practice depends on the finite-difference
vertical advection scheme.

The layer-integrated mass and thermal energy
equations (1), (2) assume the form

Mass conservation:
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Thermal energy conservation:
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As before, the caret denotes interface values needed
in the vertical transport terms. The method by which
they are constructed (upstream, centered,...) deter-
mines properties such as monotonicity and diffusive-
ness of vertical advection in the model.

Equations for other mass field tracers (moisture
etc.) have the same form as (7).

Regardless of whether θ represents potential tem-
perature or another mass field tracer, it is generally
necessary to retrieve its value (representing the con-
centration or mixing ratio of the respective tracer)
from the product θ∆p representing the “amount” of θ
per unit area. This operation becomes ill-conditioned
if ∆p at the end of the time step is much smaller, by
one or more orders of magnitude, than at the be-
ginning. In FIM we avoid generating spurious values
when dividing ∆p into θ∆p by requiring that the new
θ value remain within the range spanned by the old
θ values at the point in question and its neighbors.
Unfortunately, this introduces an element of noncon-
servation into the transport process for which a num-
ber of “engineering” remedies are available, such
as distributing the θ amount gained or lost among
neighboring grid cells. Since this problem arises only
in nearly massless cells, the θ amount in question
tends to be small, and redistributing it is generally
not worth the computational effort.

3. The Dynamic Core

3a. Time differencing

Given right-hand side values for the generic differen-
tial equation ut = F (u, x, t) at 3 consecutive time
levels n−2, n−1, n, and u at time level n, the 3rd order
Adams-Bashforth scheme (Durran 1991) expresses
u at time level n+1 by

un+1 = un +
∆t

12
[23Fn − 16Fn−1 + 5Fn−2] (8)

where ∆t is the model time step. The Adams-
Bashforth scheme is an explicit scheme and requires
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only one evaluation of F per time step. Previous
studies (Lee and MacDonald 2000; MacDonald et al.
2000) have shown that it is an accurate and efficient
scheme for numerical weather prediction models.

3b. The icosahdedral horizontal mesh

The governing equations in FIM are not solved on
the sphere but in a local stereographic projection
(Lee and MacDonald 2009) of the icosahedral grid
onto a tangent plane. The grid is generated from an
icosahedron which has 12 vertices and 20 equilat-
eral spherical triangles with 30 shared edges. As the
icosahedron is converted into a spherical body, the
30 edges become great circle segments. The spher-
ical triangles are recursively divided into smaller
ones. The final set of triangular cells is used to con-
struct hexa- or pentagonally shaped Voronoi cells
(Heikes and Randall 1995), with the pentagons oc-
cupying the 12 vertices of the original icosahedron.
After G consecutive bisections of triangle edges, the
total number of grid cells is n = 10× (2G)2 + 2.

An icosahedron can be constructed from even-
sized and -shaped hexagons (though some end up
creased because they straddle an edge), but these
attributes are lost when the icosahedron is expanded
into a spherical body, irrespective of whether the ex-
pansion takes place before or after the triangular re-
finement. There are tradeoffs between minimizing
geometric distortion and minimizing variations in cell
size during the grid generation. Tests indicate that
numerical accuracy benefits from minimizing distor-
tion, achievable by refining the plane icosahedral tri-
angles before projecting the resulting small triangles
onto the sphere. However, in the interest of unifor-
mity in mesh size, some distortion of the grid cells is
tolerated in FIM. Since outward projection enlarges
the center region of the original icosahedral trian-
gles more than the regions near their corners, vari-
ations in grid cell size are presently being reduced
by slightly displacing the vertices of refined triangles
located near the original icosahedral vertices toward
the center of the triangle they reside in (Wang and
Lee 2011).

The components of the horizontal wind vector are
defined on the icosahedral grid as follows. In all cells
except those centered on the poles, the vector is

decomposed into conventional eastward and north-
ward components. At the two poles, the wind vector
is decomposed like a vector at a point slightly off-
pole on the Greenwich meridian. When constructing
normal and tangential velocity components on the
five edges of the polar pentagons, this convention
must be kept in mind.

Many of our early experiments with FIM have
been carried out on a grid obtained by five consec-
utive subdivisions (G = 5), resulting in 10,242 grid
cells spaced approximately 240 km apart. Nine sub-
divisions, the highest number we have explored so
far, yield approximately 2.6 million cells with an ap-
proximate mesh size of 15 km.

3c. Horizontal Finite-Volume Operators

The governing equations are solved using the finite-
volume method (van Leer 1977; Lin et al. 1994)
which defines model variables as mean quantities
over each grid cell or control volume. The finite-
volume approach excels among the plethora of dis-
cretization schemes because of its integral conser-
vation properties (Lin et al. 1997). Even on unstruc-
tured grids (the icosahedral grid, despite its regular-
ity, is technically “unstructured”), conservation laws
for various quantities can be built into the finite-
difference equations by approximating terms like vor-
ticity, divergence, and gradient by line integrals along
the perimeter of each grid cell:

ζ = A−1

∮

v · ds; ∇ · v = A−1

∮

v · dn;

∇p = A−1

∮

p dn.

Here, ds is an infinitesimal vector increment along
the horizontal curve circumscribing the grid cell of
area A, and dn = ds×k, k being the vertical unit vec-
tor. The hexagonally and pentagonally shaped ele-
ments of the icosahedral mesh are well-suited for ap-
proximating such line integrals. The numerical prop-
erties of the finite-volume approach on this grid are
such that the prognostic equations can be solved in
a stable manner for extended periods of time without
explicit lateral mixing terms.

Adding explicit lateral mixing terms to some or
all prognostic equations may still be advisable to
suppress computational modes which occasionally
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make their presence known on FIM’s horizontally
unstaggered (“A”-type) grid. We presently rely on
biharmonic lateral velocity dissipation to dampen
these modes. Specifically, the stress term F in (5),
whose original role was to express surface friction,
turbulent vertical mixing, and Rayleigh damping of
gravity waves near the model top, also includes the
term

1

∆p
∇ ·
[

ν∆p∇(−h∇2
v)
]

where ν is an eddy viscosity and h is a factor pro-
portional to the grid cell size. We presently hold ν

constant except for a ramp-up in the uppermost co-
ordinate layers for additional gravity wave damping.
The negative Laplacian −h∇2

v is evaluated by sub-
tracting from each grid point value v the average of
its 5 or 6 surrounding neighbors. This interpretation
of the Laplacian operator is based on Gauss’ Theo-
rem applied to the integral of ∇2f over grid cell area
A,
∫∫

A

(∇2f) dx dy =

∫∫

A

∇· (∇f) dx dy =

∮

(∇f) ·dn.

Global constraints like mass conservation, zero
net pressure force, and zero net circulation require
exact cancellation of integral segments evaluated in
the two cells bordering a given edge segment. In
FIM, which solves equations on local stereographic
projections (Lee and MacDonald 2009), exact mass
conservation is easily achieved, but the two other
constraints mentioned cannot be satisfied exactly.

The root of the problem is the requirement that
the edge vectors ds in the above line integrals must
form a closed polygon. (Otherwise, the gradient
of a constant field would not be zero.) This can
only be achieved by representing the vectors circum-
scribing a given grid cell on a projection plane cen-
tered on this cell. Even if tangential velocity com-
ponents needed for computing vorticity are repre-
sented on edge-centered projection planes, which
renders them equal and opposite when viewed from
the two adjoining cells, the product (v · ds) does not
cancel because the increments ds are defined on
two different stereographic maps.

Line integrals yielding pressure gradients, like-
wise, must use edge vectors expressed in a cell-
centered coordinate system, which again precludes
exact global cancellation. The error involved is small

but nevertheless may lead to biases in the model cli-
matology. To ready FIM for a possible future role as
a component in an earth system model, we there-
fore intend to move line integrations from local stere-
ographic projections back to the earth’s surface.

[Additional constraints, such as the requirement
that there be no barotropic spinup over flat bottom,
may not be achievable on the unstructured icosahe-
dral mesh. This particular constraint must be applied
to the numerical rendition of the pressure torque
(Arakawa and Lamb 1977) which, being a line in-
tegral of a line integral, cannot be manipulated as
easily as conventional finite-difference expressions
on a logically rectangular grid.]

Accurate evaluation of the horizontal pressure
gradient in the momentum equation is known to be
numerically challenging on steeply inclined coordi-
nate surfaces where the term ρ−1∇zp is repre-
sented as the residual of two large opposing con-
tributions, ρ−1∇sp and ∇sφ. This is not an issue
in FIM’s θ coordinate subdomain because the pres-
sure gradient expression shown in (5), ∇sM−Π∇sθ,
reduces to ∇sM as s approaches θ. To retain the
advantge of a single-term pressure gradient expres-
sion in the σ coordinate subdomain where ∇sθ can
be large, we use the algorithm proposed by Janjic
(1977).

Tests have shown, somewhat surprisingly, that in
the isentropic coordinate domain the Janjic (1977)
formulation of the pressure gradient is inferior (in
terms of model noise and forecast skill) to the stan-
dard formulation ∇sM −Π∇sθ. For this reason, we
use in FIM a weighted average of the two formula-
tions, starting at the ground with the Janjic (1977)
approach and gradually transitioning to the standard
formulation in the upper troposphere.

3d. Flux Corrected Transport (FCT)

The term Layer Model describes a class of models
in which the vertical spacing of layer interfaces is
variable in space and time, with interface movement
controlled primarily by the convergence and diver-
gence of horizontal mass fluxes in each layer. FIM
belongs to this class of vertically quasi-Lagrangian
models. To assure the numerical integrity of a layer
model, mass fluxes must be constructed with strong
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emphasis on positive-definiteness and monotonic-
ity of the layer thickness field. The scheme chosen
for this purpose in FIM is known as Flux-Corrected
Transport (Boris and Book 1973; Zalesak 1979). The
multi-step operation is numerically complex and re-
sults in a fairly large horizontal stencil, as illustrated
in Fig. 1 for the case of a hexagonal grid and space-
centered flux expressions of 2nd order accuracy.

The task at hand is to solve the continuity equa-
tion in the cell marked by an X on the left. This re-
quires evaluation of six mass fluxes, one for each
edge of the hexagon. The stencil for evaluating indi-
vidual fluxes is shown on the right, with an X mark-
ing the edge segment which the computed flux value
is assigned to. Note that information from at most
four grid cells is needed to compute “raw” flux val-
ues of 2nd order accuracy. It is the flux limiting pro-
cess that is responsible for extending the 4-cell sten-
cil, because flux limiting requires knowledge of all six
fluxes into and out of the two cells abutting a given
edge segment.

Overlaying the stencil on the right, appropriately
rotated, over the six edges of hexagon X yields the
stencil shown on the left. Thus, Fig. 1 illustrates the
overall distance by which information spreads later-
ally during a single time step. The size of the stencil
is one reason why lateral transport in a layer model is
a relatively expensive undertaking, especially on dis-
tributed memory machines depending on message-
passing utilities for “halo” updates. (See Appendix C
for additional comments on icosahedral grid tiling on
distributed memory machines.)

Given a transport equation of the type ut=−Fx,
where F represents the flux of the variable u in x

direction, the FCT scheme proceeds in two steps.
In step 1, the u field is advanced in time using an
upstream, forward-in-time (“low-order”) scheme for
computing Fx that due to its diffusive character is
known to maintain positive-definiteness and mono-
tonicity. In step 2, antidiffusive fluxes based on more
accurate (“high-order”) approximations are added to
the diffusive fluxes. In what constitutes the essence
of FCT, these antidiffusive fluxes are locally reduced
or “limited” just enough to avoid violating the positive-
definiteness constraint and creating new extrema in
u.

In contrast to the usual practice of forming high-

Figure 1: Left: stencil of grid cells affecting the out-
come of thickness change calculations in the central
cell marked by an X. Right: stencil of grid cells affect-
ing the calculation of mass fluxes across the central
hexagonal edge segment marked by an X.

order fluxes from space-centered 4th or 6th order
finite-difference expressions, high-order fluxes are
constructed in FIM in the spirit of the (at best) 2nd

order PLM scheme (van Leer 1974; Colella and
Woodward 1984). In one spatial dimension, PLM
is monotonicity-preserving. It may be possible, with
some effort, to preserve this property even in the
present case where each cell exchanges mass with
5 or 6 neighbors. We have not yet explored this
possibility, relying instead on FCT-type flux limiting.
The spatial average of the transported variable in the
slab upstream of a cell edge is computed by assum-
ing that the variable changes linearly between cell
center and cell edge. The variable’s cell edge value
is formed by averaging the two nearest vertex val-
ues, which in turn are unweighted averages of the
3 surrounding cell values. (To preserve 2nd order
accuracy of this interpolation scheme in the case of
slightly distorted hexagons or in the presence of a
pentagon, nonuniform weights would have to be in-
troduced. This is planned for the future.)

To adapt the low-order transport scheme and the
flux-limiting algorithm, both of which are inherently 2-
time level schemes, to the 4-time level scheme (8),
we proceed as follows:

1. Low-order fluxes from three consecutive time
levels are combined as shown in (8) to gener-
ate a low-order solution at time level n+1.

2. The flux limiting process is based on “worst-
case” tendencies of the transported variable,
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obtained by selectively bundling high-order in-
coming and outgoing fluxes. These tendencies
are computed in FIM by combining, in the man-
ner of the right-hand-side of (8), the current un-
clipped high-order flux (Fn) with the “final”, i.e.,
low-order plus clipped antidiffusive, fluxes from
the previous two time levels (Fn−1, Fn−2).

3. The clipped antidiffuse fluxes are combined with
the low-order ones to form final fluxes Fn; these
are then used in (8) to compute the final value
of un+1.

Lateral transport of θ and other state variables,
such as moisture, is handled analogously. The pro-
totype transport term for these variables is ∇ ·
(θv∆p) in (7). Antidiffusive fluxes are limited in this
case on the basis of extrema in the transported vari-
able θ itself, not extrema in the product θ∆p. This
is to say that we enforce monotonicity in the tracer
concentration field, not in the tracer amount.

3e. Vertical mesh

As already mentioned, FIM is a layer model, mean-
ing that the vertical spacing of grid points is al-
lowed to vary in space and time. Since the prognos-
tic equations resemble the shallow-water equations,
layer models are also referred to as stacked shallow-
water models.

The hybrid grid in FIM resembles that of RUC
(Benjamin et al. 2004; Bleck and Benjamin 1993),
but vertical staggering of variables has been
changed because the RUC scheme does not rig-
orously conserve mass field constituents, referred
to here as “tracers”. Vertical staggering in FIM
replicates the layer treatment in the hybrid-isopycnic
ocean model HYCOM (Bleck 2002) where only pres-
sure and geopotential are carried on interfaces while
all other variables are defined in layers. Coordi-
nate layers conform to isentropic layers except in
locations where the latter intersect the earth’s sur-
face. There, layers are locally redefined as terrain-
following or σ coordinate layers. (Figuratively speak-
ing, coordinate layers make a “soft landing” instead
of crashing into the ground.) An individual coordinate
layer can be isentropic in one geographic region and
terrain-following in another.

The hybridization concept employed here and in
RUC differs from non-ALE hybrid schemes devel-
oped elsewhere (Bleck 1978b; Konor and Arakawa
1997; Pierce et al. 1991; Webster et al. 1999; Za-
potocny et al. 1991, 1994) in that it relies on lo-
cally mandated adjustment of vertical grid spac-
ing rather than on a fixed formula typically con-
sisting of a weighted average of two or more tra-
ditional coordinate choices. The present scheme
adds one important element to the original Arbitrary
Lagrangian-Eulerian technique (Hirt et al. 1974) in
that it provides a mechanism for keeping coordi-
nate layers aligned with their designated target isen-
tropes wherever possible. The original ALE scheme
(loc.cit.) only concerned itself with the maintenance
of nonzero grid spacing in Lagrangian coordinate
simulations.

While the flexibility of coordinate placement in
ALE-type schemes is disconcerting to some users
because grid point location in model space cannot
be expressed in terms of a simple analytic formula,
it allows the model designer to maximize the size of
the purely isentropic domain. The salient point here
is that ALE can set the height above ground of the σ-
to-θ coordinate transition in each geographic location
separately, i.e., unencumbered by global considera-
tions. This is a major advantage.

FIM manages the vertical grid structure as fol-
lows. If a given layer is “on target”, meaning that
θ matches the target potential temperature assigned
to this layer, and if, in addition, the 2-D shallow-water
continuity equation [eq. (6) without the ṡ terms]

∂∆p

∂t
+∇ · (v∆p) = 0 (9)

yields a layer thickness ∆p that does not fall below
a predetermined minimum value, the ∆p obtained
from (9) is accepted. In other words, FIM then treats
the upper and lower interfaces as material. If at least
one of the above conditions is not met, the “grid
generator” [see Appendix A and Bleck et al. (2010)]
takes over and changes ∂∆p/∂t in a way that main-
tains minimum thickness or moves the layer closer to
its target isentrope. In these situations, the ∆p ten-
dency selected by the grid generator is inserted into
the full continuity equation (6) which at this point be-
comes a diagnostic equation for the interlayer mass
fluxes ṡ∂p/∂s. The latter are used to vertically ad-
vect momentum and other variables.
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The role of the grid generator can also be ex-
plained as follows. Hydrostatic models infer the ver-
tical component of motion from the vertically inte-
grated horizontal mass flux divergence. The grid
generator in an ALE model divides this material ver-
tical motion into vertical motion of the coordinate
surface and vertical air motion relative to it (Bleck
1978b):
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(10)
The decision whether to accept the solution of (9) –
that is, whether to balance the right-hand side of (10)
by only the first term or by some combination of both
terms on the left – is made at each grid point and
each time step individually.

Since an override of (9) leads to vertical transport,
the grid generator in FIM is configured to perform two
tasks: it carries out the “regridding” just described,
followed by a vertical “remapping” of all prognostic
variables to the modified grid. The remapping is for-
mally equivalent to vertical advection because it is
driven by nonzero values of ṡ. However, since ver-
tical displacement of atmospheric constituents due
to actual air motion is already accounted for in the
heaving and slumping of coordinate layers, the eval-
uation of the ṡ terms in the prognostic equations
is best viewed, at least in the isentropic coordinate
subdomain, as a secondary property redistribution
initiated by thermally forced migration of isentropes
through resting air. With the atmosphere conceptu-
ally at rest, remapping can be – and is – designed to
conserve certain integral properties such as column
integrals of momentum, thermal energy, etc.

3f. Long-time step tracer transport

The use of the numerically complex FCT scheme
makes lateral transport costly in FIM. If the model
were to be used to simulate the evolution of O(100)
interacting chemical species, execution time would
be prohibitive. One approach to reducing the amount
of time spent in the FCT routine is to carry out tracer

transport intermittently, using a longer time step.
This is possible because the time step in FIM dynam-
ics is controlled by the speed of gravity and Lamb
waves, not by the typically much smaller wind speed
which governs transport processes. In other words,
advecting tracers using a time step geared toward
maintaining numerical stability in gravity wave trans-
mission is not very cost-effective.

Due to the fluctuating height of grid cells, tracer
conservation during long-time step transport is not
easily achieved in layer models. Since the transport
equations in layer models are formulated in flux form,
transport with a time step longer than ∆t, say, J∆t

where J > 1, must be based (Sun and Bleck 2006)
on a rigorously time-integrated form of the mass con-
tinuity equation (6),

∆pn+J −∆pn

J∆t
+∇s · v∆p

J

+

(

ṡ
∂p

∂s

J
)

2

−
(

ṡ
∂p

∂s

J
)

1

= 0, (11)

where the overbar denotes integration over J time
steps. To assure that the equation is exactly sat-
isfied in the model, the dynamically active fields in
FIM must already have been stepped forward from
time level n to n+J . At that instant, both the ten-
dency term and the horizontal flux divergence term
in (11) can be determined, the latter by summing up
the instantaneous fluxes over the past J time steps.
The time-integrated vertical flux terms can then be
obtained by vertically summing up (11), using ṡ = 0

at the top or bottom of the column as a starting point.

By combining (11) with the equation dQ/dt = 0

expressing conservation of a tracer Q during trans-
port (sources and sinks of Q can be evaluated sep-
arately), we arrive at the transport equation

(Q∆p)n+J − (Q∆p)n

J∆t
+∇s · (Qv∆p

J
)

+

(

ṡ
∂p

∂s

J

Q̂

)

2

−
(

ṡ
∂p

∂s

J

Q̂

)

1

= 0. (12)

which can be solved for the tracer amount Q∆p at
time level n+J . The meaning of the caret and the
method by which Q∆p is converted to mixing ratio Q

are discussed in the context of (7).

Eqn. (12) is solved by Flux Corrected Transport.
Details are as follows.
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1. Vertical Q fluxes are based on the Piecewise
Parabolic Method (PPM, Colella and Woodward
(1984)). To avoid numerical stability problems
posed by combinations of large vertical veloc-
ities and thin layers, integration of Q over the
slab upstream of a given interface may extend
over multiple layers.

2. The vertical PPM-based fluxes are used in con-
junction with horizontal upstream fluxes to arrive
at a low-order solution for Q.

3. High-order horizontal fluxes are of 2nd order
accuracy, i.e., involve averages of Q over two
neighboring grid cells.

4. The limiters applied to the antidiffusive (high-
minus low-order) fluxes to assure monotonicity
are based on the maxima and minima of “old” Q
values in (a) the cell in question; (b) its lateral
neighbors; and (c) the upstream slab(s) above
or below the cell.

Comparisons of tracer fields advected over long and
short time steps indicate that J = 10 works well in
general, the single exception encountered so far be-
ing late-winter major stratospheric warming events
when winds in the strato- and mesosphere can reach
speeds exceeding 200 m/s. In those few cases, J

had to be reduced to 5 to yield meaningful results.

Note that (6) is solved using the 3-time level
Adams-Bashforth time differencing scheme whereas
transport in (12) is carried out in forward-in-time
mode. To achieve consistency between the thick-
ness tendency term and the horizontal mass flux di-
vergence, mass fluxes from 3 consecutive time lev-
els must therefore be combined in the manner indi-
cated in (8) before they are added to the flux time
integral.

While 3-dimensional transport is the dominant
process by which tracers are redistributed in the at-
mosphere, other processes such as subgridscale
turbulent mixing cannot be neglected – especially if
tracers advected by (12) are to evolve consistently
with the primary mass field variables which in FIM
are subjected to subgridscale vertical mixing. At
the end of each long transport step, the relevant
“physics” equations should therefore be solved for
each tracer in question, using J∆t as time step.

Two issues which arise in this context and are the
subject of ongoing work shall be mentioned here:

1. Buoyancy-driven mixing in the isentropic subdo-
main – in other words, homogenization of the θ

profile – generally leads to substantial layer in-
terface displacement. The corresponding ver-
tical mass fluxes ṡ∂p/∂s act in (12) to redis-
tribute not only θ but also other tracers in physi-
cal space in a manner closely paralleling an ac-
tual mixing event. Hence, diffusing tracers (in-
cluding θ) independently as part of the standard
“physics” protocol might lead to excess vertical
mixing in the isentropic subdomain.

2. If different time steps are used to advect chem-
ical tracers and hydrometeors, conservation is-
sues arise if chemicals and hydrometeors inter-
act because chemicals are “locked up” in grid
cells of thickness ∆pn during the J short time
steps while ∆p and the hydrometeor mixing ra-
tio continue to evolve. Short of advecting hy-
drometeors on long time steps, the issue can be
resolved by introducing two hydrometeor pop-
ulations – one remaining associated with the
chemicals for the duration of the J short time
steps, and one allowed to evolve with ∆p and
other dynamics-related variables. After chemi-
cals and their associated hydrometeor popula-
tion have been subjected to transport via (12)
and all progostic variables in FIM are therefore
at time level n+ J , the two hydrometeor pop-
ulations must then be merged in a way that
conserves all relevant properties acquired since
time level n.

4. Model Physics

In order to facilitate comparison of FIM to existing
operational NWP models, column physics parame-
terizations are taken directly from the Global Fore-
cast System (GFS) of the NOAA National Centers for
Environmental Prediction (NCEP). Treatment of ver-
tical mixing, including the planetary boundary layer,
is based on Hong and Pan (1996) and Troen and
Mahrt (1986). The effects of short-wave radiation
are modeled by a scheme described in Chou (1992),
Chou and Lee (1996), Chou et al. (1998), while
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long-wave radiation is treated by the Rapid Radia-
tive Transfer Model of Mlawer et al. (1997). Penetra-
tive convection is based on Arakawa and Schubert
(1974) as modified by Grell (1993). The effect of
nonprecipitating shallow clouds is incorporated fol-
lowing Tiedtke (1983). Cloud formation on resolved
scales is treated according to Sundqvist et al. (1989)
as modified by Zhao and Carr (1997). Attenuation
of gravity waves propagating into the mesosphere is
accomplished with a crudely implemented Rayleigh
drag.

4a. Temperature diagnostics

Temperature is not a prognostic variable in FIM and
hence must be inferred from θ and p when needed.
Since model “dynamics” in FIM is formulated in
terms of θ while model “physics” is formulated pre-
dominantly in terms of T , the θ−T conversion takes
place frequently and in both directions. To avoid nu-
merical degradation during this frequent back-and-
forth, we define T , like θ, as a layer variable and
solve physics equations in layers, not on interfaces.

There appears to be considerable freedom in how
to define a “layer” pressure or “layer” Exner function,
needed for relating θ to T , in terms of interface pres-
sure. One particularly compelling and widely used
choice [e.g., Sela (1980), eq.10; Arakawa and Lamb
(1977), eq. 250] is based on the notion that the col-
umn integral for the sum of potential and internal en-
ergy should not depend on whether it is evaluated
numerically in terms of θ or T . The two forms of the
integral are

cp
g

∫

Tdp =
cpp0

g(1 + κ)

∫

θd

(

p

p0

)1+κ

(13)

Equality is assured if

θ

1 + κ
d

(

p

p0

)1+κ

= Td

(

p

p0

)

in each model layer. This condition is met if the
Exner function value relating θ to T in a model layer
is defined as a finite-difference analog of

cp
1 + κ

∂(p/p0)
1+κ

∂(p/p0)
.

By satisfying (13), the model correctly translates
temperature changes resulting from, for example, ra-

diation or cloud physics into available potential en-
ergy changes represented in the dynamics part of
FIM in terms of p and θ.

4b. Vertical motion diagnostics

One particular parameter required by the convective
cloud parameterization scheme is the updraft veloc-
ity ω ≡ dp/dt. It is diagnosed in FIM by expanding
the material derivative dp/dt into

dp

dt
=

(

∂p

∂t

)

s

+ v · ∇sp+

(

ṡ
∂p

∂s

)

(14)

and evaluating the three terms on the right individu-
ally.

By virtue of (1), the sum of the first and third term
on the r.h.s. of (14) at a given horizontal location
x, y and level s = S is given by the horizontal mass
flux divergence at x, y integrated from the top of the
atmosphere to level S:

[

∂p

∂t
+ ṡ

∂p

∂s

]

S

= −
∫ S

top

∇s ·
(

v
∂p

∂s

)

ds.

According to (6), the finite-difference analog of this
expression, valid on the lower interface of layer k

(with k increasing upward), is

[

∂p

∂t
+ ṡ

∂p

∂s

]

k−1/2

= −
ktop
∑

n=k

∇ · (vn∆pn). (15)

Completing the calculation of ω on an interface
would require evaluating the second term on the
r.h.s. of (14) on that interface. This is not straight-
forward because horizontal air motion is usually dif-
ferent on opposite sides of an interface, yielding two
possible values of (v · ∇p). This dilemma can be
avoided by evaluating (14) as a layer average, not
an interface value. Fortuitously, the convective pa-
rameterization scheme calls for a layer average.

Generating a layer average of (15) is straightfor-
ward owing to the fact that v does not vary within a
layer:

[

∂p

∂t
+ ṡ

∂p

∂s

]

k

= −1

2
∇s·(vk∆pk)−

ktop
∑

n=k+1

∇s·(vn∆pn).

For the same reason, the layer average of the 2nd
term on the r.h.s. of (14) is simply vk · ∇pk where

10



pk is the mid-layer pressure. In summary,

ωk = vk ·∇pk −
1

2
∇s · (vk∆pk)−

ktop
∑

n=k+1

∇s · (vn∆pn).

(16)

5. Sequence of Operations

Variables are updated during each model time step
in the following order.

1. Starting from momentum v
n and layer thicknes

∆pn at time level n, preliminary values at time
level n+1 are obtained by solving (5) and (9)
under the assumption that all interfaces are ma-
terial (ṡ = 0). We refer to the resulting val-
ues as v

n+1
sw ,∆pn+1

sw where subscript sw stands
for shallow water, a reminder that the 2-D ver-
sions of the respective prognostic equations
have been used.

2. Thermal energy (θ∆p) is advanced in time by
solving (7), once again with ṡ set to zero, and
with the r.h.s. set to zero. The outcome of this
process is (θ∆p)n+1

sw .

3. Values of θn+1
sw are obtained by dividing

(θ∆p)n+1
sw resulting from step 2 by ∆pn+1

sw .
Monotonicity constraints are applied to safe-
guard against indeterminacies in the limit of
zero layer thickness.

4. Diabatic forcing due to radiation, surface fluxes,
release of latent heat, etc., are evaluated us-
ing the GFS physical parameterization module
based on θn+1

sw ,∆pn+1
sw , and other state vari-

ables at time level n+1. These calculations yield
an updated potential temperature θn+1

phy where
phy stands for model physics.

5. Fields of θn+1
phy ,∆pn+1

sw are fed to the grid gen-
erator which decides on the magnitude of inter-
face fluxes ṡ∂p/∂s at each grid point. These
flux values are used to evaluate the missing ver-
tical advection terms in (5), (6), (7), yielding final
values v

n+1,∆pn+1, θn+1.

Other variables carried by the model to define the
physical state of the atmosphere (moisture, hydrom-
eteors,...) are advanced in time like the variable θ.

This is to say that transport takes place in flux form
analogously to (7); source terms are evaluated as in
step 4; and the variables are advected vertically as
part of step 5.

Vertical advection of model variables, only neces-
sary in regions where pn+1

sw 6= pn+1, is implemented
as a vertical remapping of the stairstep profiles re-
sulting from the preliminary shallow-water integra-
tion. To remain stable in situations where layer thick-
ness approaches zero while ṡ∂p/∂s remains finite,
the remapping algorithms PCM, PLM, PPM available
in FIM are formulated to allow Courant numbers > 1.

6. Model Initialization and Post-
Processing

Initial conditions for FIM are based on fields provided
by NOAA’s Global Forecast System. The state of the
atmosphere is represented in that system by surface
pressure and by layer averages of virtual tempera-
ture Tv, humidity, ozone concentration, and horizon-
tal velocity components in 64 hybrid σ−p layers on
a spherical grid. These fields are processed as fol-
lows.

1. Values of geopotential φ on σ−p interfaces1 on
the spherical grid are obtained by integrating the
hydrostatic equation layerwise in the form

∂φ/∂Π = −θv (17)

where θv = Tv(p0/p)
R/cp is the potential virtual

temperature.

2. Terrain height, interface pressure, interface
geopotential, as well as layer averages of hu-
midity, wind, and ozone concentration are inter-
polated horizontally to the icosahedral grid.

3. Virtual potential temperature in the original σ−p

layers on the icosahedral grid is deduced from
pressure and geopotential, once again using
(17). Deducing θv from φ minimizes the risk of
introducing hydrostatic height errors during hor-
izontal interpolation.

1interfaces = coordinate surfaces separating coordinate layers
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4. In each grid column on the icosahedral grid, the
stairstep profile defined in terms of θv and Π in
the σ−p system, to be referred to as θin(Π), is
converted into a new stairstep profile θout(Π) in
which the stair “risers” are the prescribed θ co-
ordinate values. The height values for the “land-
ings”, i.e., the horizontal sections in θout(Π), are
the unknowns in this transformation problem.

The transformation, which we refer to as
“restepping” and which is described more fully
in Appendix A, can result in the formation of one
or more zero-thickness layers at the top and bot-
tom of the column. Those will be inflated later.

In order to minimize truncation problems while
converting one stairstep profile into another, the
restepping process is broken into two steps.
First, the piecewise constant profile θin(Π) is
converted into a continuous, piecewise lin-
ear profile using an extension of the integral-
conserving method described in Bleck (1984b).
The linear segments are then integrated piece-
wise to form a stairstep profile with “risers” in the
desired places.

Use of the Exner function Π as opposed to p

as vertical coordinate guarantees that the height
∫

θdΠ of the input column is preserved during
each step of the vertical coordinate transform.
Without this constraint, large-amplitude exter-
nal gravity waves would likely be excited in the
model at the beginning of the forecast.

5. The grid generator (see Appendix A) is invoked
to inflate zero-thickness layers at the surface
and the top that may have been generated while
transforming the original σ− p layers to isen-
tropic layers. The piecewise linear θ profile in
the column is then integrated over the newly
formed FIM-specific σ layers to generate layer-
mean values.

6. Moisture, ozone concentration, and velocity
components are expanded into piecewise lin-
ear profiles and then integrated over the hybrid
σ − θ coordinate layers resulting from the previ-
ous step.

7. Fields of Montgomery potential are obtained by
integrating the hydrostatic equation (4). Integra-
tion starts with M defined in the lowest layer as

M1 = Πsfcθ1+φsfc where θ1 is the lowest coor-
dinate value and sfc stands for values at ground
level. (Layer 1 may be massless and must be in
contact with the ground for this formula to hold.)

For display purposes and other offline process-
ing, forecast fields are converted to p coordinates
and interpolated horizontally to a standard latitude-
longitude mesh. The vertical interpolation scheme
takes into account the fact that most variables are
treated by the model numerics as piecewise con-
stant with discontinuities at layer interfaces. The dis-
continuities are reduced prior to vertical interpolation
by replacing the “risers” in the stairstep profiles by
slanted segments whose slopes are constrained so
as to avoid creating sawtooth features.

The geopotential on p surfaces is obtained by hy-
drostatic integration from the nearest interface, us-
ing (17). The integral

∫

θv dΠ is evaluated using the
tilted θv risers which therefore must be constructed
in Exner function space for hydrostatic consistency.

7. Outlook

This document is likely to evolve as the team gains
experience with FIM and the dust settles on imple-
mentation details that are too much in flux at the time
of this writing to warrant documentation.

For publications resulting from the use of FIM, see
http://ruc.noaa.gov/pubs.cgi#3.

8. Appendix A: The Vertical Grid
Generator

8a. Background

The first-generation HYCOM grid generator, whose
design principles are described in some detail in
Bleck (2002), has been modified and tuned over the
years to address grid degeneracies that came to light
as the range of applications of HYCOM grew. This
tuning has added branches to the decision tree in
the original algorithm, creating a situation where the
underlying logic is no longer transparent to the user.

12



Complexity in the grid generator discourages experi-
mentation and adaptation of HYCOM/FIM to special
modeling needs, and hence should be avoided.

The algorithm described below represents an at-
tempt to get “back to basics” when moving layer in-
terfaces for the sake of maximizing the part of the
atmosphere represented by isentropic layers while
at the same time subjecting the layers to minimum-
thickness constraints. In the first-generation grid
generator, each grid point is inspected and adjusted
recursively in light of its distance to grid points above
and below, using a variety of semi-empirical crite-
ria. The algorithm proposed here is more straight-
forward in that it begins by transforming a given hy-
brid stairstep potential temperature (θ) profile into
a purely isentropic one, i.e., into a stairstep pro-
file whose θ levels are prescribed beforehand. De-
pending on the stratification and θ range in the origi-
nal profile, this process can produce massless (zero
thickness) layers at the top and bottom of the col-
umn. Massless layers that occur at the ground are
subsequently inflated to a prescribed minimum thick-
ness.

As outlined in Bleck (2002), differences between
the resulting hybridized layer interface pressures
and those of the input profile imply mass exchange
among layers. Model variables such as humidity and
momentum must then be exchanged between layers
as well. Any one of the standard conservative ad-
vection schemes can be used for this task.

8b. Transformation of non-isentropic stairstep θ pro-
files to isentropic coordinates

The following is an adaptation of the ocean-oriented
scheme described in Appendix D of Bleck (2002).

Let Z be a monotonic function of p decreasing
with height, and let θin(Z) be a piecewise constant
(“stairstep”) vertical profile of θ. Both the step width
∆θin and the step height ∆Z can vary from step to
step. Our task is to transform θin(Z) into another
stairstep profile differing from the original one in that
the location of the “risers” on the θ axis is prescribed.
Ideally, the transformation should be accomplished
without perturbing the potential/internal energy of
the column. Another quantity worth preserving is the
geopotential height of the column, because a trans-

formation that changes the column height is likely to
set off external gravity waves.

Let θk (k = 1, ..., n, θk+1 > θk, k increasing up-
ward) mark the points on the θ axis where we want
the new risers to be placed. We require that the θk
values span the θ range of the input profile,

θ1 ≤ θin(Z) ≤ θn for all Z, (18)

and that the input profile be monotonic. Denoting the
pressure2 of the lower and upper interface bounding
the k-th layer by Zk−1/2 and Zk+1/2, respectively, the
condition we wish to satisfy can then be stated as

n
∑

k=1

θk(Zk−1/2 −Zk+1/2) =

∫

Z1/2

Zn+1/2

θin dZ. (19)

The interface pressures are the unknowns in the
problem.

Integration by parts (on the left this amounts to re-
ordering the terms under the summation sign) allows
us to rewrite (19) as

θ1Z1/2 − θnZn+1/2 +

n−1
∑

k=1

Zk+1/2(θk+1 − θk)

= [θinZ]
Z1/2

Zn+1/2
+

∫ θin(Zn+1/2)

θin(Z1/2)

Zin(θ) dθ

where Zin(θ) is the inverse of θin(Z).

In situations where the θ range of the input profile
does not span the entire range θ1...θn, we can, with-
out altering the physical appearance of the input pro-
file, lower θin(Z1/2) to θ1 and/or raise θin(Zn+1/2) to
θn. With these modifications, the above expression
reduces to

n−1
∑

k=1

Zk+1/2(θk+1 − θk) =

∫ θn

θ1

Zin(θ) dθ. (20)

Our strategy is to satisfy (20) by breaking the in-
tegral into pieces taken over intervals (θk, θk+1) and
conserving each integral individually. This immedi-
ately leads to

Zk+1/2 =
1

θk+1 − θk

∫ θk+1

θk

Zin(θ) dθ (21)

2While Z is a function of pressure, we will refer to it as pressure
for short.
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(k = 1, ..., n−1). If condition (18) is violated, eval-
uation of (21) is postponed until the offending input
layer is brought into compliance by “diluting” it with
mass from adjacent layers. Persistent heating at
the model top, for example, is thereby transformed
into a gradual thickening of the uppermost coordi-
nate layer.

8c. Enforcement of layer thickness constraints

Suppose the prescribed potential temperature val-
ues θ1, θ2, .... in the output profile cover a wide
enough range to yield θk < θin for some k > 1. In
this case, (21) will yield Z1/2 = Z3/2 = ... = Zk+1/2,
i.e., layers 1, ..., k in the transformed profile will be
massless. Likewise, if θin < θk for some k < n, lay-
ers k+1, ..., n will be rendered massless (Zk+1/2 =

... = Zn+1/2).

In early versions of FIM, only those massless lay-
ers were inflated that were in direct contact with the
ground; massless layers were allowed to exist in the
free atmosphere. Inflation was done primarily for the
purpose of providing vertical resolution in the plane-
tary boundary layer which often is neutrally or unsta-
bly stratified. More recently, numerical stability prob-
lems associated with the amplification of vertically
propagating gravity waves have forced us to impose
a Rayleigh drag near the model top and, in connec-
tion with that, a minimum thickness threshold in the
uppermost model layers.

Layer inflation rules can be as simple as specify-
ing a constant minimum thickness ∆Z0. In this case,
the set of low-level isentropic interface values Zk+1/2

obtained from (21), to be identified here as Ẑk+1/2 to
distinguish them from the final “hybridized” values,
are recursively subjected to the constraint

Zk+1/2 = min(Ẑk+1/2,Zk−1/2 −∆Z0) (22)

(k = 1, 2, ...). Note that ∆Z0 can easily be made
layer-dependent or scaled by terrain height. (Scaling
by mixed layer depth, on the other hand, is problem-
atic as this will spawn large vertical displacements
of layer interfaces during day-night mixed layer tran-
sitions. Such displacements cause excessive inter-
layer mass exchange whose suppression is one of
the original motivations for isentropic modeling.)

An analogous formula is now used to inflate layers

near the model top where it is applied recursively in
top-down direction.

It is advisable to smooth out large lateral varia-
tions in layer thickness that typically occur where a
hybridized coordinate layer transitions from the fixed-
depth to the isentropic subdomain. These variations
are created when, for a given k, the 2nd argument in
the minimum function of (22) is chosen in one grid
column, while the 1st argument is chosen in a neigh-
boring column. One way to smooth out the transi-
tion, short of exchanging information among neigh-
boring grid columns, is to increase layer thickness
in situations where the two arguments are of simi-
lar magnitude. This is the purpose of the “cushion”
function originally introduced into hybrid-coordinate
ocean modeling by Bleck and Boudra (1981) and
later adapted for atmospheric use by Bleck and Ben-
jamin (1993). Use of the cushion function entails re-
placing (22) by

Zk+1/2 = min(Ẑk+1/2,Zk−1/2

−cushn[Ẑk−1/2 −Zk+1/2,∆Z0]).

In the two extreme cases where Ẑk−1/2 − Zk+1/2 is
either large negative or large positive compared to
∆Z0, the cushion function is designed to replicate
the functionality of (22). In other words, cushn(a, b)
returns a if a >> b and returns b if −a >> b (b > 0).
In between the two extremes, cushn varies smoothly,
returning values as high as 2max(a, b). In many
cases, this widens a layer if its potential temperature
is close to target, thereby softening the lateral inter-
face height contrast between locations where the un-
derlying layer is isentropic and where it is not.

Again, an analogous approach is taken at the
model top.

If more effective interface smoothing in the σ-θ
transition region is deemed necessary, a sideways-
looking smoothing algorithm may be required.

At the time of this writing, the minimum thickness
value ∆Z0 in near-surface layers is set as follows.

1. A default value ∆Z0(k) is specified for each
layer k. Typical values, stated here in pressure
units for easier reference, are 3 hPa in the bot-
tom layer, gradually increasing to 10 or 15 hPa
in layers above.
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2. In an attempt to mimic the vertical spacing of
conventional σ coordinate layers, all ∆Z0(k) are
multiplied by the factor (psrf−ptop)/(1000 hPa−
ptop) where psrf is the surface pressure and ptop
is the pressure level (400 hPa or smaller) where
coordinate surfaces in a conventional σ coordi-
nate model cease to be terrain-following.

3. Starting in the lowest layer and moving up the
column, Zk+1/2 is compared against the lesser

of (23) and Z1/2 −
∑k

n=1 ∆Z0(n). If it exceeds
the minimum of these two values, it is replaced
by that minimum. This is done recursively, i.e.,
altered interface values affect the inflation test in
layers above.

4. The lowest layer not in need of inflation is la-
beled kσθ; it marks the transition from the σ to
the θ subdomain.

5. The upper interface of layer kσθ stays fixed by
definition, but very thin isentropic layers qualify-
ing for inflation based on (23) can occur higher
up in the atmosphere. To keep these from un-
necessarily being inflated, the value ∆Z0(k) is
reduced in layers kσθ+1, ..., kσθ+4 by the factors
0.4, 0.2, 0.1, and 0.05, respectively. The factor
0.05 is also used in layers k > kσθ+4.

The bottom-up layer inflation procedure just de-
scribed is followed by a top-down inflation proce-
dure. It starts in the uppermost layer k = ktop where
the minimum thickness is currently set to a value
in the 20-50 Pa range. To confine deviations from
isentropic coordinate representation to as few layers
as possible, this value is gradually reduced in layers
k < ktop by the factor

[

1 +

(

k − ktop
4

)2
]−1

.

8d. Vertical advection

The “regridding” process described in the preceding
sections must be followed by a “remapping” process
in which model variables are advected vertically in
response to changes in interface pressure. Borrow-
ing from HYCOM, vertical advection of momentum
as well as tracers such as humidity, liquid water con-
tent, etc., is currently handled by either the piece-

wise constant, piecewise linear, or the piecewise
parabolic method (PCM, PLM, PPM) (van Leer 1974;
Colella and Woodward 1984). All variables men-
tioned are remapped in p space to conserve their
mass-weighted column integral.

Potential temperature is a special case. The re-
gridding process described earlier yields a new θ

distribution that may be viewed as resulting from up-
stream or donor cell advection in Z space. To sup-
press the numerical diffusivity implied by this low-
order scheme, FIM actually discards the θ field re-
sulting from the regridding exercise and replaces it
by a field advected by the same higher-order scheme
that is used for the other prognostic variables.

There is a price to be paid for inferring the amount
of mass transferred between layers from a piece-
wise constant θ distribution, as is done in (19)–(21),
and subsequently using a higher-order scheme to
remap θ. Neither will the slab of air arriving in a layer
have the potential temperature needed to precisely
restore that layer to target, nor will the transfer leave
θ in the donor layer unchanged. However, we find
that repetitive use of the restoring algorithm allows
layers to reach their target relatively quickly.

One advantage of using a higher-order advection
scheme for θ is that the variable Z in (19) – (23) no
longer needs to be chosen with an eye on the con-
servation properties of the regridding scheme. Any
variable monotonic in pressure, including p itself, is
acceptable. What matters now is the vertical coor-
dinate used during remapping of θ. FIM allows the
use of either (p/p0)κ or (p/p0)1+κ (where κ = R/cp).
The rationale for providing these two options is given
in the following section.

8e. Conservation alternatives

It follows from (17) that the height of an air
column can be preserved during vertical regrid-
ding/remapping by setting Z = Π. Unfortunately,
this choice of Z does not allow us to satisfy an-
other important constraint: conservation of column-
integrated internal energy I =

∫

cvTdp and column-
integrated potential energy P =

∫

gρz dz. (In an
ideal gas, internal and potential energy are propor-
tional to one another, so conservation of one entails
conservation of the other.) The incompatibility of col-
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umn height conservation with internal/potential en-
ergy conservation becomes clear if one writes P and
I in terms of θ and p and compares the resulting ex-
pressions

I =
cvp0

g(1 + k)

∫

θ d

(

p

p0

)1+k

(23)

P =
Rp0

g(1 + k)

∫

θ d

(

p

p0

)1+k

(24)

(k = R/cp) with the formula for column height,
∫

θdΠ,
in which θ is integrated over a variable proportional
to (p/p0)

κ. It is easy to see now that conservation of
I and P can be achieved during remapping of θ by
using (p/p0)

1+k as vertical coordinate, but that this
can only be done at the price of violating the height
preservation constraint. The relative importance of
height versus internal/potential energy conservation
is hard to assess without practical tests.

8f. Miscellaneous refinements

Discretization of a continuous profile θ(p) in term of
a stairstep profile is not unique, because stairsteps
can be broken into smaller steps or combined into
bigger ones without violating any continuity or con-
servation principle. This ambiguity can lead to
computational modes in the vertical layer struc-
ture, leading to the gradual disappearance of, say,
odd-numbered layers accompanied by a thickening
of even-numbered ones. Initial experiments with
FIM indeed revealed a propensity for amplifying this
mode. To suppress it, a special algorithm has been
added to the grid generator.

The algorithm is still in a state of development.
Its present version scans each grid column for se-
quences of 5 ∆p values, numbered ∆p1, ...,∆p5, that
satisfy the following three conditions:

∆p1 < ∆p2

∆p5 < ∆p4

∆p3 < min(∆p2,∆p4).

If all three conditions are met, layer 3 is inflated
by drawing mass from both layers 2 and 4 such
that (a) the column integral of θ is conserved and
(b) ∆pnew3 = min(∆pnew2 ,∆pnew4 ). Requirement (a)
leads to the constraint

∆p2 −∆pnew2

∆p4 −∆pnew4

=
θ4 − θ3
θ3 − θ2

which may put a limit on the mass transfer stipu-
lated by (b). The resulting interface displacements
are added to those associated with the primary re-
gridding process.

Suppression of the layer thickness computational
mode improves the performance of the GFS column
physics parameterization scheme which has been
found to be sensitive to large variations in layer thick-
ness.

9. Appendix B: Turbulent Vertical
Mixing

9a. Background

The following is a simplified version of a numerical
scheme developed by McDougall and Dewar (1998)
for carrying out vertical mixing in fluid models whose
vertical coordinate is a function of the diffused vari-
able(s). They deal with the specific problem of mix-
ing temperature and salinity in ocean models whose
vertical coordinate is potential density (a function of
both temperature and salinity), constrained to re-
main constant in each coordinate layer during mix-
ing.

Here we deal with the much simpler problem of
solving the diffusion equation in an atmospheric col-
umn where there is only one diffused variable (po-
tential temperature θ) doing double duty as vertical
coordinate. The only variable capable of capturing
the effects of thermal diffusion in this case is the
thickness of coordinate layers.

9b. The mixing scheme

The equations expressing conservation of mass and
heat in a column, basically 1-D versions of the equa-
tions listed in the beginning, are

∂

∂t

(

∂z

∂s

)

s

+
∂

∂s

(

ṡ
∂z

∂s

)

= 0. (25)

(

∂θ

∂t

)

s

+

(

ṡ
∂z

∂s

)

∂θ

∂z
= −∂Fθ

∂z
(26)

The turbulent heat flux Fθ = w′θ′ is usually param-
eterized as Fθ = −K∂θ/∂z where θ is the resolved-
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scale potential temperature and K is a thermal diffu-
sivity coefficient.

The flux form of (26), obtained by combining (25)
and (26), is

∂

∂t

(

θ
∂z

∂s

)

+
∂

∂s

(

ṡ
∂z

∂s
θ

)

= −∂Fθ

∂s
. (27)

The task at hand is to discretize the above equa-
tions for use in a model framework where stratifica-
tion is represented by a piecewise constant, stairstep
θ profile. The discretization will be done by formally
integrating the equations over individual stairsteps.

If θ is to remain constant in each layer during the
mixing process, Fθ must be vertically constant in
each layer. If this were not the case, integrating (26)
over an individual layer would yield a nonzero right-
hand side. Of the two terms on the left, the second
one integrates to zero since ∂θ/∂z = 0 inside the
layer. (The vertical mass flux ṡ∂z/∂s remains fi-
nite.) Hence, a nonzero r.h.s. implies a nonzero
tendency term ∂θ/∂t which clashes with the stated
requirement.

We conclude: for diffusion to leave a mark on the
profile under the constraint Fθ = const in individual
layers, Fθ must be allowed to vary from layer to layer.
The implied infinite heat flux divergence at layer in-
terfaces is consistent with the notion that air crossing
an interface undergoes an instantaneous change in
θ.

A simple centered finite-difference expression for
the heat flux in layer n is

Fn
θ =

Kn

2

θn+1 − θn−1

zn+1/2 − zn−1/2
(28)

where fractional superscripts indicate quantities de-
fined on interfaces.

The central task is to determine the mass flux
across layer interfaces, ṡ∂z/∂s. For this we inte-
grate (27) over an s interval representing an infinites-
imal slab bracketing a layer interface. Since the ten-
dency term drops out as ∂z approaches zero and the
mass flux ṡ∂z/∂s is continuous in the vertical, we
obtain in the limit of zero slab thickness

(

ṡ
∂z

∂s

)n+1/2

=
Fn+1
θ − Fn

θ

θn+1 − θn
. (29)

Expressions (28) and (29) encompass the sought-
after solution to the problem of diffusing heat in a
stairstep θ profile while maintaining θ in individual
layers. Note that, in the absence of externally im-
posed heat fluxes, the column integral

∫

θdz is con-
served regardless of the physical and numerical ap-
proximations made in evaluating the heat flux (28).

The heat flux as approximated by (28) becomes
infinite in massless layers. To avoid division by zero,
the denominator in (28) must therefore be bounded
away from zero. The parameter representing mini-
mum layer thickness, together with K and the time
step used in solving (27), can be tuned to concen-
trate the effect of vertical diffusion almost entirely on
very thin layers. We use the scheme in this mode as
an alternative to the grid generator to avoid generat-
ing zero-thickness layers in the isentropic subdomain
that may result from strongly layer-dependent dia-
batic forcing. The advantage of the present scheme
over the grid generator is that it does not produce
local deviations from target θ. Suitable parameter
values are: 0.1 m2 for the product of time step and
mixing coefficient, and 3 cm for the minimum thick-
ness. A smaller thickness threshold would spread
interfaces apart more quickly but has been found on
occasion to entrain more air from neighboring layers
than is available.

Ideally, vertical mixing should conserve the total
heat content of the column,

∫

cvTdp. From (23) we
note that in order to conserve total heat, the vari-
able z in (25) – (29) must be replaced by a variable
proportional to p1+k. No other changes are required
in the solution procedure, except that the mixing co-
efficient K in (28) must be rendered dimensionally
compatible with the new vertical coordinate.

In a similar vein, preservation of the total height
∫

θdΠ of the column during mixing can be achieved
by using a variable proportional to pk in place of z.
Note that height preservation is incompatible with
heat conservation.
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10. Appendix C: Grid Tiling on Di-
stributed Memory Machines

Execution speed on distributed memory machines
depends greatly on the amount of “halo” informa-
tion passed among processors. Halos are rows of
grid points that need to be brought in from neighbor-
ing processors to permit finite-difference operations
near the edges of grid blocks or tiles3 assigned to
the various processors.

The following is a description of schemes cur-
rently available for distributing the global isosahe-
dral mesh among multiple processors. The schemes
make use of the fact that in each of the 10 rhombi
formed by pairing the original 20 triangles, icos grid
points form a logically square matrix. The available
schemes will be referred to as IJ and IJ-block. Two
versions of the IJ-block scheme exist, but their al-
gorithmic differences are beyond the scope of this
discussion.

The simplest situation is one where exactly 10
processors are available for running FIM: each pro-
cessor is then assigned one rhombus. For processor
counts of 20 and beyond, the schemes developed to
date carve up individual rhombi into smaller tiles, and
they do this in exactly the same way for each rhom-
bus. There are two criteria for optimizing this proce-
dure: (1) each tile should have an aspect ratio close
to 1 (i.e. be as square-like as possible) to minimize
halo size; (2) tiles should contain similar numbers of
points to optimize load balance.

For the IJ layout, the points in each rhombus are
stored in one vector that traverses the entire rhom-
bus and is distributed among P processors by simply
dividing it into P equal (or near-equal) parts. Points
are ordered from top left to bottom right in rows and
columns in typical rectangular grid fashion. So for
P=20 (20 processors per rhombus for a total of 200
processors) the first tile would consist of the first 5%
of the rows, and its length would be 20 times the
width – not a very good halo layout.

The IJ-block layout attempts to create tiles whose
aspect ratio is much closer to 1. For P=1, the IJ-
block layout is the same as the IJ layout – one pro-
cessor per rhombus. For P = N2 (N=1,2,4,8,...) the

3The words block and tile are used synonymously here.

IJ-block decomposition has equal sides and thus the
smallest possible halo. For other numbers of pro-
cessors the task of carving up a rhombus is more
complicated and involves compromises.

For simplicity, we will illustrate the carving opera-
tion for the special case of an icosahedral grid con-
sisting of 10,242 points (G=5). In this case, each
rhombus contains 32×32 points. Two additional pole
points are set aside and will be added to suitable tiles
at the end.

The approach taken by the IJ-block scheme can
be summarized in 3 steps:

1. The 32 columns in the rhombus are divided into
n strips, n being an integer close to

√
P . For

P=7, for example, n=3 is a good choice.

2. The envisioned tiles, each consisting of ap-
proximately (32×32)/P points, are distributed as
evenly as possible among the strips defined in
step 1. If P=7 and n=3, the tile count per strip
will be 2-2-3, respectively.

3. The final step is finding the strip width. For good
load balance, the width of each strip should be
proportional to the number of tiles inside it, i.e.,
the width ratios in our example should ideally be
2:2:3. In the case of 32 columns, strip widths of
9-9-14 columns come closest to those numbers.

Size and shape of individual tiles in our example
turn out to be 9 × (32/2) = 144 points in the two 9-
column strips, and 14 × (32/3) = 149.3 points in the
14-column strip. Load balance is fairly good, consid-
ering the ideal tile size of 1024/7 = 146.3 grid points.
The block aspect ratios in this example are 1.8 and
1.3, respectively – not perfect but acceptable given
the somewhat odd choice of P=7.

To improve load balance within each strip, tiles are
allowed to have partial rows. This feature also per-
mits easy addition of the two pole points set aside
earlier. No attempts are presently made to partially
move ”vertical” dividing lines (parts of the original
strip boundaries), or to transfer points among tiles
belonging to different rhombi.

The above description suggests that the optimal
processor count for distributed-memory FIM jobs is
10×N2 (N=1,2,3,...). The IJ-block scheme in this
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case achieves near-perfect load balance (less than
perfect because of the two extra pole points) and the
shortest possible halos.
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